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Note on Variance Approximations

The purpose of these notes is demonstrate how approximation formulae for variances can be computed
from a general approximation method called the delta formula, and formula, and to show how these
formulae work in special cases. The “delta formula” or method is an approximation formula derived
by Taylor expansion in the distribution of one or several statistics around their mean. It can be used
to compute crude approximations to means and variances when exact results can not be obtained
analytically. A general description of the method can be found for example in Section 6.1.2 of [2]. In
these notes, we use the formula to derive approximations to variances for non-linear transformations
involving one or two variables.

Let X and Y be random variables with distributions for which we are able to estimate means and
variances. Let f denote a function of one variable, i.e. x — f(z). Let similarlty g denote a function
of two variables, i.e. (z,y) — g(x,y). The delta formula yields the following approximations

Var(f(X)) ~ Var(X)(df/0x)?,
Var(g(z,y)) =~ Var(X)(dg/dx)* + Var(Y)(dg/dy)* +2Cov(X,Y )(dg/0x)(dg/dy),
where it is understood that all functions are evaluated at the means for X and Y.

These formulae can be used both in situations where we have a full sample for X (and Y') and
where we only have a single estimate with a standard error, typically a coefficient in some sort of
regression analysis. The formulae are probably simpler to apply if we simply denote these values by
X (instead of m1) and Y (instead of ms) although the estimates are not necessarily means.

Some examples of application of these formulae:

e f(xz)=In(z): Here 9f/0x = 1/z, so that the formula takes the form:
VarIn(X) ~ Var(X)/z? ~ 53 /X? = (sx /X)°.

leading to well-known formula that the standard deviation of In(X) can be estimated by the
coefficient of variation (cy ) of X. This also explains why the logarithm is the variance-stabilizing
transformation when the mean and standard deviation are proportional.

e f(z)=+/x: Here 0f/0x = 1/(2y/x), so that the formula takes the form:
VarVX ~ Var(X)/(2v/x)? ~ 5% /(4X),

which explains why the square-root function is the variance-stabilizing transformation for count
data that could be modelled by a Poisson distribution (which has equal mean and variance).

o g(z,y) = 2/y: Here Og/0x = 1/y and 0g/0y = —x/y?, so that the formula takes the form:
Var(X/Y) ~ Var(X)/y* + Var(Y)z? /y* =2 Cov(X, Y)z/y® ~ s% /Y2 + 53 X2 /Y4 —25xy X /Y3,

with sxy being the estimate of the covariance between X and Y. If X and Y are assumed
independent, this term cancels.



An alternative to these approximation formulae is to estimate variances by simulation. Bootstrap-
ping is a special technique used to determine the variance of some statistics of interest, typically
estimates from a statistical analysis (e.g. [1]). Both non-parametric and parametric versions of boot-
strap methods exist; in the context of post-processing certain estimates after a statistical analysis,
the parametric bootstrap is often most natural. It consists in simulation from the distribution of the
estimates of interest.

As a simple example, assume that a certain statistical analysis has produced independent estimates
my and me with associated standard errors. As above, we will denote these statistics as X,Y, sx and
sy although the estimates may not be simple averages. If the distribution of the estimates can be
approximated by a normal distribution (this is true in large-sample situations for a very wide range
of statistics, including regression coefficients and means), we can estimates the standard devation of
the ratio r = X /Y by the following procedure:

e loop from ¢ =1 to 1000,
e for each i: simulate X; ~ N(X,s%) and Y; ~ N(Y, s?), and compute r; = X;/V;,
e compute across all simulations the mean and standard deviation of r1, ..., 71000.

This algorithm is fairly easy to implement in different software packages, e.g. Stata, Minitab or
Excel. The number of simulations (1000 in the above example) can be increased to achieve higher
precision. The method can be generalized to many other situations. If in the example above the
estimates could not be assumed independent but an estimate sxy of the covariance between them
was available, one would simulate the pair from a two-dimensional normal distribution: (X;,Y;) ~
N(X,Y,s%, 5%, sxy).
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