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Notes on Linear Mixed Models

These notes are intended to supplement, not replace, material in the textbook [1] of the VHM 802
Advanced Veterinary Biostatistics course. Their purpose is threefold,

1) to introduce linear mixed models and some general concepts/ideas frequently encountered (vari-
ance components, nesting, repeatability and reproducibility, to name a few),

2) to review random effects models in 1-way and 2-way factorial designs,

3) to outline a statistical analysis based on the ANOVA table and the so-called expected mean
squares for balanced designs.

The present version is a fourth, revised and completed version.
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1 Introduction

Up front we attempt to remedy some common points of confusion. One is the varied and interchange-
ably used terminology (section 1.1). Another is the different analytical approaches to linear mixed
models (section 1.4)

1.1 A word about terminology

Mixed models (for continuous data) are a class of models which contain parameters or effects of two
types:

• “fixed”, like ordinary regression coefficients,

• “random”, referring to the stochastic part of the model (beyond the usual error term)

Although not strictly logical, the term random effects models is usually used to denote such models
with both types of effects. Sometimes, though, they are meant to cover models with only categorical
predictors, but linear mixed models encompass both continuous and categorical predictors.

Mixed models can be used to take into account that the data have a hierarchical or multilevel
or nested structure, and sometimes the models are also referred to by these names. Although other
methods exist for hierarchically structured data, the mixed model approach has become a popular
choice during the last decade, due to advances in computational power. Mixed models apply also to
other data structures, such as longitudinal data with repeated measures on the same observational
unit — this data structure only in part falls within the hierarchical data framework.

Variance components are some technical/mathematical constructs used in mixed models (which
therefore are also sometimes called variance component models). The main idea is that the variance
(variation, variability) in a dataset may be decomposed into (a sum of) several components that can
each be given a useful interpretation.

1.2 Data example

The National Environmental Research Institute of Denmark collected (in 1992) data on laboratory
measurements of concentrations of different chemical substances. We show here the results for concen-
trations of 4-methylphenol and 5 laboratories. Six samples were sent to each laboratory, 2 replicates
of 3 dilutions. Samples were blinded and the laboratories were not aware of the experimental design.

phenol (µg/l) Dilution
Laboratory 1 2 3

A 5.5 4.7 9.8 10.3 11.6 11.8
B 7.7 7.5 12.4 12.5 16.4 17.0
C 7.4 7.1 12.5 11.8 15.9 16.2
D 6.5 7.1 10.0 9.4 12.6 12.7
E 6.5 7.0 11.0 9.9 13.5 12.7

The purpose of the study was to determine the accuracy of concentrations measured at different
laboratories. The participating laboratories used the same analytic procedure and were previously
accredited for these analyses.
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We first consider only the data at dilution 1, which consists of 2 replicates at each of 5 laboratories
and a total of 10 observations. Denote by yij the concentration of sample j from laboratory i, where
i =A,. . . ,E and j = 1, 2. The usual 1-way ANOVA model is

yij = µi + εij , or yij = µ+ αi + εij , (1)

where the errors εij are independent and ∼ N(0, σ2). The model is appropriate to examine differences
among the 5 selected laboratories, and the parameter µi corresponds to the level of laboratory i,
which would approximately equal the average of many samples from that laboratory. We would,
however, like to say something about laboratories in general, and the accuracy on determinations
not only at the same laboratory (which we can do from model (1)) but also at different laboratories.
Such analysis requires an assumption that the 5 laboratories are representative of a population (of
laboratories). With that in place, we change the “fixed effects” αi in model (1) to “random effects”
Ai:

yij = µ+Ai + εij , where Ai ∼ N(0, σ2A). (2)

Random means simply that it is modelled as a random variable, in contrast to a (fixed) parameter.
The term Ai corresponding to laboratory i being a random variable reflects our perception that the
laboratory represents one of the laboratories from the population (ideally, it was randomly selected
from the population).

Factors where one is less interested in the specific levels themselves than interpreting them as
representing a population are quite common: lots, litters, herds, person, patients. . . . For any block-
type factors (a division of experimental units into homogeneous groups) there may often be more
interest in the variation between the groups than the groups themselves. Another angle is that the
specific levels may be of interest if they can be used in other studies, whereas levels representing a
population are more natural if they are only used in this dataset. Random effects modelling of factors
can be justified even if the levels are not drawn randomly from a population. The key assumption is
that the levels represent a population, and the focus is on the variability in the population (σ2

A
).

Before looking in more detail at this new model, we’ll outline how the model could arise as the
result of a two-step sampling procedure (sometimes ([1]) called subsampling). For the purpose of
determining measurement accuracy among laboratories, the natural procedure would be to submit
the same sample to a number of laboratories, each of which would return their (single) measurement.
This would give rise to the 1-sample model,

yi = µ+ ǫi where i ∼ laboratory and ǫi ∼ N(0, σ2ǫ ), (3)

where µ and σǫ are the mean and standard deviation in the population of laboratories (more precisely,
laboratory measurements of that single sample). Extending the design by sending two identical
samples to each laboratory leads to the design discussed above. In the model, we have to additionally
include a variation between the two samples at the same laboratory, because if there was no such
variation the two analyses at the same laboratory would give the same value. This leads us to the
model (2) with two random terms.

1.3 Random effects and variance components

The assumptions on the random effects in model (2) are

Ai ∼ N(0, σ2A), εij ∼ N(0, σ2), Ai and εij are independent.
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Thus, we assume the impact of laboratory i to be a normally distributed, random fluctuation with
mean zero and standard deviation σA. Therefore the parameter σ2

A
may be interpreted as the overall

variation (variance) in measurements between laboratories. The parameter µ is the population mean,
and σ2 is the variation (variance) within a laboratory (between measurements at the same laboratory).
Furthermore, we may calculate

Var(yij) = Var(Ai) + Var(εij) = σ2A + σ2. (4)

In effect, we have decomposed the total variance as a sum of the variance between laboratories
and the error variance (or the variance within laboratories). Therefore, the σ2’s are called variance
components. As we will see below, the estimates in our example are σ̂2

A
= 0.852 and σ̂2 = 0.138.

From these we can compute interesting quantities, such as

• the proportion of the variance residing at the different levels: σ2
A
/(σ2

A
+ σ2) and σ2/(σ2

A
+ σ2)

(in the example, these values are 86% and 14%, respectively),

• the (intraclass) correlation between two observations from the same laboratory: ρ = σ2
A
/(σ2

A
+

σ2) (in the example, the value is 0.86).

Note finally that in the 1-sample model (3) the error term ǫi includes both the variation between
laboratories and the variation within each laboratory that have been separated in the 1-way model.

1.4 Scope of statistical approach

The traditional (or classical) method of analysis for random effects model is based on the ANOVA
table. For a balanced design, the table differs only from that of the corresponding fixed effects model
by the way the F -statistics are calculated. More precisely, tests in random effects models may have
another denominator than MSE, reflecting that another variation is appropriate for measuring the
effect. Furthermore, the mean values of mean squares can be used to construct estimates of the
variance components in the model. Therefore, ANOVA tables for random effects models often have
an added EMS (expected mean square) column. Both of these approaches work fine in a balanced
dataset and reasonably well in a slightly unbalanced dataset. However, one serious disadvantage of
the ANOVA-based analysis is that it is usually up to the analyst to figure out the standard errors of
parameter estimates, using formulas pertinent to the actual design. This is because most statistical
software using ANOVA-based methods is little helpful on this point (Stata, anova command; Minitab;
SAS, glm procedure). Formulas are provided here for the basic designs, as well as some general
principles.

The modern method of analysis is based on the likelihood function, and involves an iterative
procedure to obtain the so-called (restricted) maximum likelihood estimates. This method is available
in some general statistical packages (SPSS, version 11; SAS, mixed procedure; S-Plus and R, lme
library), as well as in special-purpose packages for multilevel data (MLwiN, HLM). For balanced
designs, it gives similar and in many cases identical results to the ANOVA-based method, but with
correct standard errors. For (strongly) unbalanced designs, this is the recommended method.

These notes deal only with ANOVA-based methods for balanced designs.

2 1-way ANOVA with random effects

The parameters of model (2) are µ, σ2
A

and σ2, and the full list of model assumptions is
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i) independence of the random terms εij and Ai,

ii) fixed part of the model: Eyij = µ, where Eyij is the expectation of yij,

iii) homoscedasticity — same variance of all observations yij, by equation (4),

iv) normal distribution of the random terms εij and Ai.

2.1 Statistical analysis

The ANOVA-table for a balanced 1-way model with random effects, a groups and n observations per
group (note: we use n instead of N used in [1]) is

Source DF SS MS EMS F

A (groups) a− 1
∑

ij(ȳi. − ȳ..)
2 SSA/DFA σ2 + nσ2

A
MSA/MSE

Error a(n− 1)
∑

ij(yij − ȳi.)
2 SSE/MSE σ2

Total an− 1
∑

ij(yij − ȳ..)
2

Table 1: ANOVA table for 1-way random effects model.

The F -test is for the hypothesis of no difference between groups, H0: σ
2

A
= 0, and follows the usual

distribution F (DFA,DFE) under H0. The EMS (expected mean square) column shows how E(MSA)
depends on the variation between groups (σ2

A
). Just as in ordinary ANOVA tables, the use of a

one-sided F -statistic may be justified by referring to that fact that it is a ratio between statistics with
the same expected value when H0 is true, and that the numerator has larger expected value when
H0 is false. Furthermore, we use this column to construct our (unbiased) estimates of the variance
components:

E(MSE) = σ2 ⇒ σ̂2 = MSE,

E(MSA) = σ2 + nσ2A ⇒ σ̂2A = (MSA − MSE)/n.

If the value obtained for σ2
A

is negative, it is common practice to set it to zero. For estimation of µ
we have the formulas:

µ̂ = ȳ.. and SE(µ̂) =
√

MSA/(an).

This is our first example of using a different variation than MSE. The standard error of µ̂ is computed
using MSA, and the degrees of freedom for a confidence interval are accordingly DFA. The estimate
itself (µ̂) is the same as in the fixed effects model, but the variation associated with it is different,
because in a random effects model it must also take the variation between groups into account . For
checking the assumptions of the statistical model involving the random effects Ai, we compute the
estimates (residuals):

Âi = ȳi. − ȳ..,

and compare their distribution to a normal distribution.

Note 2.1. As a more technical note, we demonstrate how to determine SE(µ̂). From the model
formula (2), we calculate

ȳ.. = µ+ Ā. + ε̄.. and Var(ȳ..) = Var(ā.) + Var(ε̄..) = σ2

A
/a+ σ2/(an).

From the last formula it follows that Var(ȳ..) = E(MSA)/(an), so the natural estimate for the
standard error is

√

MSA/(an).
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Example 2.1. One dilution measured at multiple laboratories
For the data example with 5 laboratories and 2 replicates within each laboratory, we get the table:

Source DF SS MS EMS F P

Laboratories 4 7.37 1.84 σ2 + 2σ2
A

13.35 0.007

Error 5 0.69 0.138 σ2

Total 9 8.06

and the parameter estimates:

σ̂2 = MSE = 0.138,

σ̂2A = (MSA − MSE)/2 = (1.84 − 0.138)/2 = 0.852,

µ̂ = 6.70 and SE(µ̂) =
√

MSA/10 =
√
0.184 = 0.43.

The data show clear evidence of a variation between laboratories, and that variation seems in fact to
much larger than the variation within laboratories. �

2.2 Repeatability and reproducibility in laboratories

Loosely speaking, repeatability refers to the agreement between two measurements made using the
same method and under the same circumstances, and reproducibility to the agreement between mea-
surements from similar (but not the same) circumstances. The meaning of “similar” depends on the
context; some examples are (i) different laboratory, (ii) same laboratory, but different day and/or
technician and/or equipment. Depending on the type of measurement and design, the repeatabil-
ity and reproducibility can be quantified in different ways. We describe here a method from the
international standard ISO 5725, based on random effects models, see also [2].

The key idea is to quantify agreement not on a relative scale (like a correlation) but as the value
two observations would differ at most by when taken under the same or similar conditions. Since
our models are based on the normal distribution (which extends infinitely), such a value can only be
given with a certain confidence, and the usual confidence chosen is 95%. That is,

• the repeatability , r̂, is the value not exceeded with probability 95% by the difference between
two measurements taken under the same conditions,

• the reproducibility , R̂, is the value not exceeded with probability 95% by the difference by two
measurements taken under similar but not the same conditions.

In our example, repeatability refers to the variation within laboratories and reproducibility refers to
the variation of two measurements taken in different laboratories. For the 1-way model, the formulas
are:

r̂ = 2
√
2×

√
σ̂2 and R̂ = 2

√
2×

√

σ̂2
A
+ σ̂2,

which for the data example gives the values

r̂ = 2.83
√
0.138 = 1.05 and R̂ = 2.83

√
0.852 + 0.138 = 2.82.

Our interpretation is that we can be 95% confident that the difference of two values from the same
laboratory does not exceed 1.05, whereas two values from different laboratories with 95% do not
differ more than 2.82. The large variation between laboratories makes in this case the reproducibility
considerably larger than the repeatability.
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Note 2.2. As a technical note, we show how the factor 2
√
2 arises. Recall that in a normal

distribution with mean µ and standard deviation σ, a central 95% (prediction) interval of the
distribution is (µ − 1.96σ, µ + 1.96σ). The variable in question here is a difference between two
observations. For r these are from the same laboratory, say y11 and y12, and for R from different
laboratories, say y11 and y21. In both cases, the differences follow a normal distribution with
mean zero (because the observations have the same fixed model term, µ). Furthermore, using the
model equation (2),

Var(y11 − y12) = Var(µ+A1 + ε11 − (µ+A1 + ε12)) = Var(ε11 − ε12) = 2σ2,

Var(y11 − y21) = Var(µ+A1 + ε11 − (µ+A2 + ε21)) = Var(A1 −A2 + ε11 − ε12) = 2(σ2

A
+ σ2).

Taking the square-root of these equations gives us the standard deviations of the zero-mean
normal distributions, and the prediction intervals for the differences will be symmetric around 0
and extending 1.96 times the standard deviation to both sides. That is, the differences are (with
probability 95%) within 1.96 times the standard deviation, or approximately 2 times the standard
deviation — which are our formulas.

3 2-way ANOVA with random effects

We consider here a balanced 2-way factorial with factors A (a levels) and B (b levels) and replications
per (A,B)-combination (n replicates). The full dataset of our example is one example of such a layout,
with A ∼ laboratories (a = 5) and B ∼ dilutions (b = 3) and n = 2 replicates. The 2-way models
contain 3 terms: the main effects of A and B as well as their interaction. As each of these terms
can in principle be either fixed or random, the number of possible models increases considerably. We
review the most commonly encountered models and their interpretation, and give the ANOVA tables
and some hints for the statistical analysis.

3.1 Model types

When building 2-way factorial models, the two factors A and B may be taken as fixed or random
independently of each other. The rule for interactions is that they must be taken as a random effect
when at least one of the factors is random. However, it is possible for an interaction to be a random
effect even if all factors are fixed effects. Therefore, the most interesting models for a 2-way factorial
are as listed below. We denote our data by yijk, where i = 1, . . . , a ∼ factor A, j = 1, . . . , b ∼ factor
B, and k = 1, . . . , n ∼ replicates.

I: yijk = µ+ αi + βj + αβij + εijk − all fixed effects, (5)

II: yijk = µ+ αi + βj +ABij + εijk − random interaction, (6)

III: yijk = µ+Ai + βj +ABij + εijk − random effect A and A∗B, (7)

IV: yijk = µ+Ai +Bj +ABij + εijk − all random effects. (8)

The models assume all random variables to be independent and distributed as follows: εijk ∼ N(0, σ2),
ABij ∼ N(0, σ2

AB
), Ai ∼ N(0, σ2

A
) and Bj ∼ N(0, σ2

B
). Note that we use the combined notation ABij

or αβij for the interaction terms instead of introducing a new variable name like γij , in order to make
it more transparent from which variables the interaction is formed.
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Example 3.1. Several dilutions measured at multiple laboratories
In our data example we have so far only considered the first dilution. Including several dilutions
(within the normal range) increases the scope of the test, and enables a more detailed comparison of
the variations. As already noted, the full dataset has a two-say layout with factor A ∼ laboratories,
factor B ∼ dilutions and two replicates. By analysing all dilutions together we assume the variation
to be constant across the range of dilutions. This can be checked by comparing estimated variance
components from separate analyses of the 3 dilutions. These data possibly show a slight indication
of higher variation between laboratories at dilution 3, but nothing to stop us from analysing the data
together.

To choose the statistical model we consider which of the two factors should be fixed and random.
As before, we model the laboratories by random effects because our interest is in the variation between
them. The dilutions were probably set by the person responsible for the test, to cover roughly the
range of values of interest. They can not be considered as a sample from a population, and there is
no interest in the variation between dilutions. Therefore, dilutions should be taken as a fixed effect.
By the above interaction rule, the interaction should be a random effect, so we choose model III in
(7). The three variance parameters have the following interpretations:

• σ2: the variation within laboratories at the same dilution,

• σ2
A
: the overall variation between laboratories,

• σ2
AB

: the variation between laboratories specific to different dilutions.

The total variance is separated into these variance components,

Var(yijk) = σ2A + σ2AB + σ2.
�

3.2 Statistical analysis

The ANOVA tables of the four 2-way models (5)–(8) differ only in their EMS and F columns, shown in
table 2. In the EMS columns, we denote by σ2α the variation between the αi’s in a fixed effects model
for factor A. It is positive, unless there are no differences between the factor levels (H0: α1 = . . . = αa

is true). We similarly use σ2β and σ2αβ for fixed effects of factors B and A∗B.

Source DF EMS(I) EMS(II) EMS(III) EMS(IV) F (I) F (II–IV)

A a−1 σ2+σ2

α σ2+nσ2

AB
+σ2

α σ2+nσ2

AB
+bnσ2

A
σ2+nσ2

AB
+bnσ2

A

MSA
MSE

MSA
MSAB

B b−1 σ2+σ2

β σ2+nσ2

AB
+σ2

β σ2+nσ2

AB
+σ2

β σ2+nσ2

AB
+anσ2

B
MSB
MSE

MSB
MSAB

A∗B (a−1)(b−1) σ2+σ2

αβ σ2+nσ2

AB
σ2+nσ2

AB
σ2+nσ2

AB

MSAB
MSE

MSAB
MSE

Error ab(n−1) σ2 σ2 σ2 σ2 – –

Total abn−1

Table 2: Condensed ANOVA table for four balanced 2-way factorial models I–IV.

The ANOVA table shows how F -statistics for the main effects change between the fixed effects
model (I) and the random effects models: by substituting for MSE the MSAB. The denominator
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degrees of freedom of the F -distribution changes accordingly to (a−1)(b−1). The table also shows
how the variance components enter the EMS column, from which their estimates are computed:

E(MSE) = σ2 ⇒ σ̂2 = MSE,

E(MSAB) = σ2 + nσ2AB ⇒ σ̂2AB = (MSAB − MSE)/n,

E(MSA) = σ2 + nσ2AB + bnσ2A ⇒ σ̂2A = (MSA − MSAB)/bn,

E(MSB) = σ2 + nσ2AB + anσ2B ⇒ σ̂2B = (MSB − MSAB)/an.

Again, a negative value for a variance component would usually be set to zero.

Note 3.1. Standard errors of fixed effect estimates and contrasts are generally more difficult to
compute than in random effects models. The additional question (relative to fixed effects models)
is which random variations to involve. For the (balanced) 2-way ANOVA models II and III with
one fixed effect (B), the general rule is that contrasts (including pairwise comparisons) for B use
the MSAB. The procedure for group level means for B is different in the two models because the
random effects of factor A in model III must be taken into account. The following calculations,
which are typical for random effects models, show how the appropriate variations are determined:

II & III: Var(ȳ.1. − ȳ.2.) = Var(AB.1 −AB.2 + ε̄.1. − ε̄.2.)

= 2(σ2

AB
/a+ σ2/(an)) = 2E(MSAB)/(an),

II: Var(ȳ.1.) = Var(AB.1 + ε̄.1.) = σ2

AB
/a+ σ2/(an) = E(MSAB)/(an),

III: Var(ȳ.1.) = Var(Ā. +AB.1 + ε̄.1.) = σ2

A
/a+ σ2

AB
/a+ σ2/(an).

It follows that in both models the MSAB is used for pairwise comparisons (and contrasts). It also
follows that in model II the MSAB is used as well for the standard error of group means of factor
B. In model III, no MS-value has an expected value proportional to the group mean variance.
Still, the standard error we may compute simply by inserting the estimated variance components,
but no degrees of freedom is available. Several approximations exist: a conservative one is to use
the smallest DF among the random effects involved (in this case, DFA), and very liberal ones are
to use the largest DF or a standard normal.

Example 3.2. Several dilutions measured at multiple laboratories (cont.)
The ANOVA table for model III applied to the full dataset is as follows:

Source DF SS MS EMS F P

Laboratories 4 47.70 11.93 σ2 + 2σ2
AB

+ 6σ2
A

8.59 0.005
Dilutions 2 271.70 135.8 σ2 + 2σ2

AB
+ σ2β 98.0 < 0.001

Lab. ∗ Dil. 8 11.11 1.389 σ2 + 2σ2
AB

8.61 < 0.001
Error 15 2.42 0.161 σ2

Total 29 332.93

The table shows all effects to be clearly significant. Estimates of the variance components are

σ̂2 = MSE = 0.161, σ̂2AB =
MSAB − MSE

2
= 0.614, σ̂2A =

MSA − MSAB

6
= 1.756.

From these values, we may recompute estimates of repeatability and reproducibility based on the full
dataset. As previously, the repeatability refers to the variation within a laboratory and at the same
dilution, and is estimated by

r̂ = 2
√
2×

√
σ̂2 = 2.83

√
0.161 = 1.14.
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Thus, we are 95% confident that two measurements at the same laboratory differ no more than 1.1
in their value. This value is pretty close to the one from the analysis of one dilution only. The
reproducibility refers to variation between laboratories for measurements on the same dilution, and
must therefore include all variance components. Note that we include σ2

AB
as well, because we do

not restrict our statement to be valid for one dilution only (for which R could be obtained as in the
previous analysis) but for any of the 3 dilutions. Thus, two values from different laboratories and at
any (same) dilution differ with 95% probability no more than

R̂ = 2
√
2×

√

σ̂2
A
+ σ̂2

AB
+ σ̂2 = 2.83

√
1.756 + 0.614 + 0.161 = 4.50.

This value is quite a bit larger than the one obtained for dilution 1, indicating as already noted that
the variation between laboratories seems to increase with the dilutions. �

In fixed effects ANOVA models, main effects for factors involved in significant interactions are often
of little interest, and should be interpreted with care. For example, when there is a strong interaction
the main effects of A may be small (non-significant) because of opposite effects at the different levels of
B. In such a case it is clearly wrong to conclude that A has no effect. In random effects models, there
is greater freedom to examine main effects even in the presence of an interaction. In our example,
the main laboratory effect expresses the overall variation between laboratories (the variation that is
common to all dilutions), and this quantity is meaningful no matter the magnitude of the interaction.
It therefore makes sense to both estimate σ2

A
(as we already did) and to test whether it is zero. The

denominator of the F -test is MSAB; thus, we measure the variation between laboratories not relative
to the variation within laboratories but to the variation between laboratories at the different dilutions.
As MSAB is usually larger than MSE and has less degrees of freedom, we have less power to detect
such differences between laboratories. Similar considerations apply to dilution effects. Accepting the
presence of random fluctuations in dilution effects across laboratories, we may test for overall dilution
effects — relative to the variations across laboratories. The conclusion of the analysis in the example
was that the overall dilution effects were huge, even relative to the variations across laboratories.

Taking this line of reasoning a bit further leads to a justification of the model (II) in (6) with fixed
main effects and a random interaction. When a significant interaction is encoutered in an ordinary
fixed effects model, and the interaction cannot be given a clear interpretation but seems mostly to be
random fluctuations around the parallel curves (in the interaction plot), one may decide to “make” the
interaction random and thereby measure the two main effects against the interaction variation. They
will be significant in the analysis if their effects are stronger than the interaction. Before doing this,
one should however always make sure that the interaction does not contain interesting information
in itself.

4 Nested 2-way ANOVA

It is common usage to call one factor B nested within another factor A, if there is no link between the
observations at the same B-level across different A-levels. This contrasts the usual situation, which is
sometimes called two crossed factors, where all observations at the same level of one factor do share
the corresponding common feature. We illustrate these ideas by an example.
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Example 4.1. Pig breeding data
A breeding experiment involving 5 sires, 2 dams per sire and 2 pigs per litter recorded the weight
gain (over a certain period) of the piglets (data from [3]).

Sire 1 2 3 4 5

Dam 1 2 1 2 1 2 1 2 1 2

weight 2.77 2.58 2.28 3.01 2.36 2.72 2.87 2.31 2.74 2.50
gain 2.38 2.94 2.22 2.61 2.71 2.74 2.46 2.24 2.56 2.48

Here the dams are nested within sires, because the dams used for different sires are completely
unrelated. That is, a total of 10 dams were used, and they would in principle be randomly selected
from a population of dams. If the two factors were to be crossed, there would only be 2 different
dams in the experiment, and both would have been used with each of the 5 sires. �

An alternative notion for designs with a nesting is that they have a hierarchical structure (next
section). For the analysis of a design with nested factor(s), the simple rule is that a nested factor should
never be allowed a main effect (because the factor levels are meaningless when viewed alone) and that
the factor is therefore represented solely by its interaction with the factor into which it is nested.
In the example, the combined factor from the factors Sire and Dam has 10 levels, corresponding
exactly to the 10 dams in the dataset. The interaction is often taken as a random effect; the general
considerations for random effects apply. In the ANOVA table, the row of the main effect of the nested
factor cancels, and the SS and DF are pooled into the interaction. It is worthwhile knowing that many
software packages have a special notation for nesting: the most common one is B(A), for the factor
B being nested within A.

Example 4.2. Pig breeding data (cont.)
For the pig data, we take the effect of sires to be fixed (assuming that there is specific interest in
comparing the performance of the 5 sires) and the effect of dams to random (assuming that the dams
represent a population of dams). Note that if dams are taken as fixed effects, we cannot examine
main effects of sires in presence of a dam effect. Thus, the statistical model is (with yijk denoting the
weight gain of pig k bred by dam j and sire i),

yijk = µ+ αi +ABij + εijk, (9)

where ABij ∼ N(0, σ2
AB

) and εijk ∼ N(0, σ2). The ANOVA table is shown below.

Source DF SS MS EMS F P

Sires 4 0.100 0.025 σ2 + 2σ2
AB

+ σ2α 0.22 0.92
Dams (Sires) 5 0.564 0.113 σ2 + 2σ2

AB
2.91 0.071

Error 10 0.387 0.039 σ2

Total 19 1.050

The table shows that there is only a weak (just above statistical significance at the 5% level) effect
of dams, with an estimated variance component of

σ̂2AB = (MSAB − MSE)/2 = (0.113 − 0.039)/2 = 0.037.

In addition, there are absolutely no statistically interesting differences to be seen between sires. �
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5 Split-plot designs and hierarchical structures

This section supplements the comprehensive discussion of split-plot designs in the textbook ([1]) with
a discussion of data structures akin to a split-plot design and of the rationale behind a split-plot
design. Finally, we give models and ANOVA tables for both of the two basic versions of split-plot
designs: with and without blocks. We also summarise the computation of standard errors for fixed
effects estimates and contrasts, although these are discussed in detail in the textbook.

5.1 Clustering derived from data structure

In our usage, clustering means that some observations share some common features (that is not
explicitly taken into account by explanatory variables in a model). We discuss here clustering as a
result of sharing a common environment, physical clustering in space and repeated measurements
within the same individual. Cows within a herd, puppies within a litter, quarters within a cow are
all examples of clustering in environment. We usually assume that the degree of similarity among all
pairs of observations within such a cluster are equal. Such clustering is not necessarily restricted to a
single level. For example, pigs may be clustered within a litter which may be clustered within a pen
of pigs, which may be clustered in a farm which may be clustered in a region, as shown in the Fig.
5.1. Such data are called hierarchical or multilevel data. The structure shown in Fig. 1 is a 5-level
structure. In practice, we deal more often with data that have a 2-level or 3-level structure.

Region

Farm/Herd

Flock/Pen

Litter

Animal

............................................................................................................

............................................................................................................

............................................................................................................

............................................................................................................

Figure 1: A typical hierarchical data structure in veterinary epidemiology.

The hierarchy in Fig. 1 suggests that farms in the same region are similar. It seems natural to
replace or extend this relationship by one where the dependence between farms is directly related
to (inversely proportional to) their distance. Spatial models incorporate the actual locations, in this
example of the farms but it could also be the actual locations of cows in a tie-stall barn. If such
detailed information is not available or detailed spatial modelling is not desirable (eg. due to sparse
data), spatial clustering may be accounted for by hierarchical level(s).

Repeated measures arise when a several measurements of a variable are taken on the same animal
(or other unit of observation) over a period of time. Daily milk weights in a cow are highly correlated
since the level of milk production on one day, is likely to be quite close to the production on the day
before and the day after. Multiple measurements of lactation total milk production across lactations
within a cow are also repeated measurements, but would not be so highly correlated. We may think
of repeated measures as a special type of clustering and for the above examples even add an extra,
bottom level in the diagram (Fig. 1) for days or time. However, just as with spatial clustering,
several special considerations apply. Observations close together in time are likely to be more highly
correlated than measurements with a longer time span between them. Also, the clustering may occur
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at any level in the hierarchy, not just a the lowest level. For example, if a study on pig production
involved several batches within a farm, the flock/pen level should be replaced by batches, which would
then correspond to repeated measures over time on the farm.

Diagrams like Fig. 1 are generally highly recommended to determine and present data structures,
only should their defaults with regard to spatial and repeated structures be kept in mind. Note that
the data structure pertains not only to the outcome but also to the predictor variables and it is very
useful to know whether they vary or were applied at particular levels. We elaborate on this idea in
the context of the simplest two-level experimental design: the split-plot design.

5.2 Split-plot design

The split-plot concept and terminology dates back to the early 20th century where statistical methods
were developed in the context of agricultural field trials. Consider the planning of an experiment
involving two factors A and B with a and b levels, respectively. The special feature of the design is
that factor B is practically applicable to smaller units of land (plots) than factor A. In the field trial
context, we may think of A as a large-scale management factor such as pesticide spraying by plane
and B as a small-scale factor like variety. The experimental units for factor A are called whole plots.
The design needs some replication, and we assume to have a total of ac whole plots at our disposal,
laid out in c blocks of size a. The blocks would typically be separate pieces of land or experimental
sites. A minor modification of the design occurs if the ac whole plots are not laid out in blocks but
are just replicates; the same principle applies, but for simplicity we describe the design with blocks
only. Within each block, the design would now by laid out in a two-step procedure, as illustrated in
Fig. 5.2:

1.) randomly distribute the levels of factor A onto the a whole plots,

2.) divide each whole plot into b subplots, and randomly distribute the levels of factor B onto the
subplots.

B = 3 B = 1

B = 2 B = 4

B = 1 B = 4

B = 2 B = 3

A = 2 A = 1

Block I

subplots

whole plots
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Figure 2: Split-plot layout within one block, with a = 2 whole plots and b = 4 subplots.

As an animal production example, we might have a herd management factor A and a factor B
applicable to individual animals (so that animals in the same herd may have different levels of B).
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Thus, the whole plots would be the herds, and the subplots the animals. The blocks would be groups
of similar herds, eg. in the same region. Generally, a split-plot design corresponds to a 2-level hierarchy
with whole plots as the upper level and subplots as the bottom level.

In the analysis of a split-plot experiment, the two factors cannot be expected to be treated equally
because they are applied to different experimental units. In particular, effects of the whole plot
factor A should be compared to the variation between whole plots (corresponding to the first step
of the design construction), and effects of the subplot factor B to the variation between subplots.
It follows that it is necessary (and possible) to split the total variation into variations between and
within whole plots. These variations are estimated independently from each other and with different
accuracy (degrees of freedom). Usually the whole plot variation will be considerably larger than the
subplot variation, and factor A is estimated with less precision than factor B. As will be seen in
the ANOVA tables, the interaction between A and B “belongs to” the subplot variation, intuitively
because differences between B-levels within any A-level can be determined within the whole plots.
This makes the split-plot design particularly attractive in situations where the principal interest is in
the interaction and less in the main effect of factor A.

5.3 Split-plot models and ANOVA tables

The statistical model for a split-plot design with blocks is as follows, where observations are yijk with
i = 1, . . . , a ∼ the whole plot factor A, j = 1, . . . , b ∼ the subplot factor B, and k = 1, . . . , c ∼ blocks,
(again in a slightly different notation than in [1])

yijk = µ+ αi + βj + (αβ)ij + Ck + (AC)ik + εijk, (10)

where the block effects Ck ∼ N(0, σ2
C
), the whole plot errors ACik ∼ N(0, σ2

AC
) and the subplot errors

εijk ∼ N(0, σ2), and all errors are independent. The blocks are taken here with random effects, but
the analysis with fixed block effects is quite similar. Table 3 outlines the corresponding ANOVA table.
As previously, we use the notation σ2α, σ2β and σ2αβ to denote fixed effects variations.

Source DF SS MS EMS F

A (whole plot factor) a− 1 SSA SSA/DFA σ2 + bσ2
AC

+ σ2α MSA/MSAC

C (blocks) c− 1 SSC SSC/DFC σ2 + bσ2
AC

+ abσ2
C

MSC/MSAC

A∗C (whole plot var.) (a− 1)(c− 1) SSAC SSAC/DFAC σ2 + bσ2
AC

MSAC/MSE

B (subplot factor) b− 1 SSB SSB/DFB σ2 + σ2β MSB/MSE

A∗B (a− 1)(b− 1) SSAB SSAB/DFAB σ2 + σ2αβ MSAB/MSE

Error (subplot var.) a(b− 1)(c − 1) SSE SSE/MSE σ2

Total abc− 1

Table 3: ANOVA table for a split-plot model with blocks.

The split-plot design was introduced in the context of a block design for the whole plots where
the layout is easiest to describe. However, split-plot structures arises equally in contexts where there
are replications instead of blocks for the whole plot factor. In particular, this is a more appropriate
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analogue for the hierarchical models. The models and ANOVA tables are very similar to those shown
above, with the modifications that follow from the absence of blocks. The model can be written as
follows, where index k now corresponds to replications of each whole plot level,

yijk = µ+ αi + βj + (αβ)ij + (AC)ik + εijk, (11)

and with the same assumptions as above on the random effects. The ANOVA table is given as well.
In both versions of the balanced split model, the split-plot variance σ2

AC
can be estimated from the

respective ANOVA tables as,
σ̂2AC = (MSAC − MSE)/b.

Source DF SS MS EMS F

A (whole plot factor) a− 1 SSA SSA/DFA σ2 + bσ2
AC

+ σ2α MSA/MSAC

C(A) (whole plot var.) a(c− 1) SSAC SSAC/DFAC σ2 + bσ2
AC

MSAC/MSE

B (subplot factor) b− 1 SSB SSB/DFB σ2 + σ2β MSB/MSE

A∗B (a− 1)(b− 1) SSAB SSAB/DFAB σ2 + σ2αβ MSAB/MSE

Error (subplot var.) a(b− 1)(c − 1) SSE SSE/MSE σ2

Total abc− 1

Table 4: ANOVA table for a balanced split-plot model with replications.

Note 5.1. Standard errors of fixed effect estimates and contrasts use different estimates of
variation, similar to the discussion for a two-way ANOVA in note 3.1, to which the reader is
referred for details. We give only a summary of the results for (both) split-plot models.

• whole plot factor: standard errors for means and contrasts use the whole plot variation
MSAC instead of the residual (subplot) MSE,

• subplot factor: standard errors for contrasts use MSE, but standard errors for group means

use both variance components: Var(ȳ.1.) = (σ2

AC
+ σ2)/ac, see below for approximating the

degrees of freedom for the estimated total variance, σ2

tot = σ2

AC
+ σ2,

• interaction: standard errors for means of the combined factor (A×B) use the estimate for
σ2

tot, standard errors for contrasts within the same level of the whole plot factor (e.g., ψ =
(αβ)11 − (αβ)12) use MSE, whereas standard errors for contrasts involving different levels
of the whole plot factor (e.g., ψ = (αβ)11 − (αβ)21) also use the estimated σ2

tot.

The so-called Satterthwaite approximation of the degrees of freedom for the estimated σ2

tot is
determined from

1/df = k2/DFAC + (1− k)2/DFE, where k = MSAC/(MSAC + (b − 1)MSE).
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