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These notes describe various simple models and methods for analysis of longitudinal data and show
how the analyses can be carried out using SAS. The descriptions require some knowledge of analysis of
variance, also with random effects as in split-plot experiments, in particular. Knowledge of multivariate
analysis is not required, and the plain multivariate analysis of variance, treating each series as a single
multivariate measurement, is not accouted for here. Other relevant methods that are not included
are random coefficients regression and the so-called ante-dependence methods. General references for
statistical analyses of this kind of data are [1] and [2].

Below is first given a brief introduction to the problems and an example of multivariate data which
will be used to illustrate the methods. Section 2 contains the description of the methods, while SAS-
programs and output are collected in Section 3.

1. Introduction

A longitudinal study can be characterized by having several consequtive measurements on the same
individuals, or experimental units, as opposed to investigations where only one measurement is made per
individual. Also the phrase “repeated measurements” is used to describe such studies. The consequtive
measurements are typically measurements taken at various time points, but time may be replaced by
one-dimensional space, for example observations on a row of trees. Although the “individuals” in some
applications might be experimental units of a different type, for example a sample plot in a forest, we
use the word “individuals” throughout; this also mathces the example used here.

The reason that an analysis of longitudinal data requires special considerations is that measurements
on the same individual cannot be considered independent, as if they were from different individuals.
Thus it is sometimes simply seen that some individuals give persistently higher observations than others,
but sometimes the pattern is more complicated. In any case it is wrong to use time as a factor in an
analysis of variance and regard observations as independent, without effect of the individual in the
model. Such an analysis may lead to gross misinterpretations of data.

The following example is a typical and relatively simple example of results from an experiment with
longitudinal data.

Example 1. Growth of guinea pigs
The following data are taken from [1]. In an investigation of the effect of vitamine E on the growth
of guinea pigs 15 animals were observed for 7 weeks. In week 1 they were given a growth-inhibiting
substance. In the beginning of week 5 they received different amounts of vitamine E (dosage 0, 1 or 2
in appropriate units). There were 5 animals for each treatment group, and each animal was weighted
at the end of week 1, 3, 4, 5, 6, and 7. Figure 1 shows the growth curves for the animals in the three
groups. Let

Yij = weight of ith animal at jth time point

gr(i) = treatment group for ith animal

tj = time for jth measurement ,

where i = 1, . . . ,m = 15 and j = 1, . . . , n = 6 with (t1, t2, t3, t4, t5, t6) = (1, 3, 4, 5, 6, 7).
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Figure 1: Weight of guinea pigs from Example 1.
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Week
Dosage Animal 1 3 4 5 6 7

0 1 455 460 510 504 436 466
2 467 565 610 596 542 587
3 445 530 580 597 582 619
4 485 542 594 583 611 612
5 480 500 550 528 562 576

1 6 514 560 565 524 552 597
7 440 480 536 484 567 569
8 495 570 569 585 576 677
9 520 590 610 637 671 702
10 503 555 591 605 649 675

2 11 496 560 622 622 632 670
12 498 540 589 557 568 609
13 478 510 568 555 576 605
14 545 565 580 601 633 649
15 472 498 540 524 532 583

Table 1: Data from Example 1: Weights of guinea pigs (g).

The structure of the design is like in a one-way analysis of variance comparing the three groups
(dosages), but for each animal we have a series of measurements instead of just one. To describe the
dependence between the measurements on the same animal, (Y1, . . . , Yn), we introduce the covariance
matrix (or the variance-covariance matrix) V (Y ), an n × n-matrix in which the (j, k)th element vj,k is
defined as

vj,k =

{

Var(Yj) j = k
Cov(Yj , Yk) j =k

.

The corresponding correlations are ρjk = corr(Yj, Yk) = Cov(Yj, Yk)/
√

vj,jvk,k, and the correlation
matrix with these elements is also sometimes considered. Thus, the covariance matrix contains the
variances in the main diagonal, the covariances between all pairs outside the diagonal. The simplest
structure of the covariance matrix is a diagonal matrix with identical diagonal elements,

V (Y ) =











σ2 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σ2











.

which means that Y1, . . . , Yn are independent with the same variance σ2. Other types of covariance
structures are needed to describe longitudinal data. In multivariate analysis of variance the model
allows for any covariance matrix, so the covariance matrix is estimated in the analysis. However, this
requires estimation of many parameters (all variances and covariances) and may therefore be ineffective,
especially with long series of measurements. Furthermore the multivariate analysis of variance does not
use the order of measurements. Other methods attempt to take advantage of this information.

2. Models and methods

Methods discussed further below are:

1) separate analyses for different time-points: weak analysis, awkward for longer series,
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2) analysis of a summary statistic: good and simple method, relies on a good choice of summary
measure,

3) split-plot model with individual as “mainplot”: good for short series, dubious for longer series,

4) (ǫ-)correction of split-plot analysis: good for short as well as long series.

Before discussing these methods let us briefly consider the effect of ignoring that the measurements
within a series are from the same individual. Thus, pretending that the weights in Example 1 were
from 90 guinea pigs instead of 15, one would disregard a source of variation which is almost invariably
of importance: the variation between individuals. This results in wrong estimates of other types of
variation, for example the residual variance. In the present case it would lead to a comparison of the
groups with the variation between measurements rather than between individuals which would be more
correct. For illustration and comparison the table of analysis of variance is given as Table 2.

Source SS DF MS F P

Groups 18548 2 9274 4.84 0.01
Weeks 142555 5 28510 14.9 <0.001
G × W 9763 10 976 0.51 >0.5
Residual 137987 72 1916
Total 308852 89

Table 2: Wrong analysis of data from Example 1, neglecting variation between individuals.

The method and hence the resulting significant difference between groups is incorrect.

Method 1): Separate analyses for different time-points
Suppose that in Example 1 we only use the last measurement for each animal. We would then perform
a one-way analysis of variance based on the model

Yin = α(gri) + εin . (1)

This would not be wrong, but it would be inefficient because all the remaining measurements are wasted.
We could then make a similar analysis for each of the other time-points, but it might then become difficult
to combine the conclusions from the different analyses. Since the analysis would not tell how strong
correlations there are between different measurements from the same series, we cannot tell whether a few
significances at different time-points stregthen the evidence of group effects, or whether we essentially
just see the same evidence several times. One might then settle for a few time points (far apart) for
analysis, but should then resist the temptation of choosing the time points where there seems to be group
differences. This would cause a selection effect that is difficult to take into account when interpreting
the significances. The difficulty can be partly resolved by using the Bonferroni correction for performing
n tests (one for each time point); this would require a P -value as low as 0.05/n to be interpreted as a
0.05 significance, for example.

Thus it is possible to make correct analyses time-by-time, but it is a weak analysis, because it does
not use the combined information. Even more important is that this type analysis does not describe or
analyse the development over time. A one-way analysis of variance as (1) has individuals as replicates
and these are represented by single measurements. The pattern in Figure 1 suggest that more precise
information about the individual can be obtained using the entire curve.

As an illustration of the problems arising from separate analyses group means and F -tests are shown
in Table 3. No significances can be obtained even though it seems that the control group (dosage 0) has
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Average Ȳ.j

Week j Dosage 0 Dosage 1 Dosage 2 F (groups)

1 466 494 498 2.10
3 519 551 535 0.87
4 568 574 580 0.14
5 562 567 572 0.05
6 546 603 588 1.39
7 572 644 623 2.46

Table 3: Separate analyses of data from Example 1 for each week. F -test statistics should be compared
with F.95,2,12 = 3.89 or with the Bonferroni-correction: F.992,2,12 = 7.33.

lower values than the other groups after week 5 when the treatment started.

Method 2): Analysis of a summary statistic
The analysis is performed in two steps. In the first step you choose a single quantity to calculate from
each individual curve, for example the increase from first two last measurement. This results in a single
measurement for each individual which is then analysed by usual methods in the second step, typically
by an analysis of variance, and in Example 1 just like the analysis of a single time-point. In fact, the
analysis of a single time-point can be considered a special case of a summary measure, but rarely a
very good choice. The use of a summary statistic avoids the problem of dependence between several
measurements from the same individual, but it is important to make good choices of summary statistics,
and one will often use a figure like Figure 1 as guidance in this choice. Common choices of summary
statistics are

- average over time Ȳi.,

- slope, β̂i, in regression on time,

- total increase Yin − Yi1,

- area under curve,

- single time-point Yij with j fixed.

Note that although the analysis is carried out on a single summary statistic nothing prevents us from
analysing several summary statistics separately. Thus, it is quite common to make separate analyses of
the average and the slope, for example.

Summary statistics should be chosen to have specific interpretations related to the problem under
investigation. They are not (primarily) based on statistical considerations — for example the use of a
slope from a regression does not require that the curve is modelled well by a straight line. The slope
can simply be used as a measure of average increase even if there is some curvature. If the curvature is
very clear it might, however, suggest the curvature itself as a summary statistic.

Usually an analysis based on summary statistics should be limited to 2 or 3 summary statistics,
otherwise the same type of problems arise as with analyses of each time-point separately, namely the
combination of many, possibly dependent, results. The summary statistics are most usefully chosen to
represent different aspects of the curve, so that the individual analyses supplement each other rather
than tell the same story. For example, it is usually better to analyse average value and slope, rather
than last value and slope, because a high slope usually reults in a high last value. With several summary
statistics it is also possible to use a multivariate analysis of these.
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Some loss of information may be involved in the reduction from the curve to the summary statistic(s).
Thus, consider a regression of the measurements for each individual on time. The linear regression
model can be extended by a quadratic term, a cubic term, and so on until the term of degree n − 1,
because a polynomial of degree n − 1 may be chosen to fit the n measurements perfectly. This model
for a particular individual can be written

Yj = α + β1tj + β2t
2

j + . . . + βn−1t
n−1

j

= γ0 + γ1p1(tj) + γ2p2(tj) + . . . + γn−1pn−1(tj) ,

where pk, k = 1, . . . , n − 1 are so-called orthogonal polynomials of degree k. The advantage of using
orthogonal polynomials are first of all that the estimate of a particular coefficient, γ̂k, does not depend
on the degree of the polynomial fitted, and second that these estimates are statistically independent.
The model does not change by using orthogonal polynomials, it is just rewritten in terms of other
parameters. The expressions for orthogonal polynomials are somewhat awkward and the easiest way to
obtain the estimate γ̂k using statistical programs is as the estimate of the coefficient of degree k in a
polynomial regression of degree k. Thus, for each k we run a polynomial regression analysis of degree k:

Yj = α + β1tj + β2t
2

j + . . . + βkt
k
j + εj .

and use only the coefficient of highest degree, βk. Note, by the way, that this has to be done for each
individual.

Use of orthogonal polynomials in this connection is described in [5], among others. For each individual
you compute the estimates for different degrees: intercept (average), first degree (slope), second degree
(curvature), etc., then you analyse each of these as a summary measure. It is easiest to interpret the
coefficients of low degree, and usually at most the three mentioned are used.

In the analysis of the coefficient of each degree with respect to treatment effects, etc., there is still
the problem of combining the information from several analyses. The problem is not as prominent here
if only a few degrees are used. However, to see what further information is obtained by analysing a
term of higher degree, [3] suggest to use the coefficents of lower degrees as covariates in each analysis.
Thus, first the intercepts (γ̂0i) are analysed in the factorial model corresponding to the design. Then
the slopes (γ̂1i) are analysed in the same model adding (γ̂0i) as a covariate. In this analysis the test
for treatment effect is adjusted for the information already provided by the intercept coefficients (γ̂0i).
Next step is to analyse the curvatures γ̂2i using (γ̂0i) and (γ̂1i) as covariates, and so on. In this way it
is sometimes seen that all treatment effect is contained in the first one or two terms, which makes it
easier, for example in pairwise comparisons, to explain which differences between treatments are found.
To present the different developments over time one should, however, not forget if also higher order
coefficients differ — even if this is explained by the lower order coefficients.

Example 2. Growth of guinea pigs (continued)
We show two examples of the use of summary statistics for these data. Since the treatment is not applied
until week 5 it seems natural to attempt to measure the treatment effect by the following variable

Di = Yi7 − Yi5 , i = 1, . . . ,m

and to use the “baseline” measurement Yi5 as a covariate:

Di = α(gri) + β Yi5 + εi , (2)

As seen in the analysis of variance, Table 4, the covariate is unimportant, but we can establish a
treatment effect with reasonable certainty.
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Source SS DF MS F P

Groups 11287 2 5643 11.96 0.002
Initial wt. (week 5) 3 1 3 0.01 >0.5
Residual 5192 11 472

Table 4: Analysis of variance table (partial tests) for the model (2) of weight gains from week 5 to week
7 for the data from Example 1.

The average weight gains for the treatment groups are

Dosage 0 Dosage 1 Dosage 2

Estimate 10 77 55

LSD0.95 29

so the analysis establishes a positive effect of vitamine E on weight gain for the guinea pigs. In Table 5
an analysis is shown using orthogonal polynomials of degrees 0, 1 and 2. Thus, for each individual the
intercept, slope and curvature are estimated, and a one-way analysis of variance is carried out for each
degree. The table shows estimates from each group, corresponding LSD-values, F -tests for treatment
effects from the one-way ANOVA, and in the last column the corrected F -tests using the method from
[3] with lower order coefficients as covariates as described above.

Estimate
Variable Dosage 0 Dosage 1 Dosage 2 F (groups) P LSD0.95 Fcorr

intercept 539 572 566 1.06 0.38 — 1.06
slope 16.0 22.6 19.6 0.83 0.46 — 0.15
curvature -3.88 0.49 -0.40 7.45 0.008 2.61 6.05

Table 5: Analysis of coefficients from orthogonal polynomials up to degree 2 for data from Example 1.

It is seen from the table that there is a significant difference between the curvatures from the three
groups, due to a negative curvature for dosage 0 (see also Figure 1). The effect is the same as ob-
served earlier with the smaller weight gain for dosage 0 after week 5. In the present case the covariate
adjustments are not of any use because there are no significant differences between intercepts and slopes.

Method 3): The split-plot model
It is possible to view an experiment with longitudinal data as a kind of split-plot experiment, with
individuals as the ‘main-plots’ to which the treatments are applied. The ‘sub-plots’ are then the single
measurements (or occasions) for each individual. The main-plot factor in Example 1 is the dosage
applied to the guinea pig, and the sub-plot factor is time. The statistical model is

Yij = α(gri, j) + Ai + εij , Ai ∼ N(0, σ2

A), εij ∼ N(0, σ2) , (3)

where the term α(gri, j) contains main effects of group and time as well as their interaction, and where
σ2

A is the variation between individuals, and σ2 is the residual variance between single measurements.

The model can be critisized for various reasons and is by now considered inadequate for most longi-
tudinal data analyses. One critical point is that times cannot be randomized within individuals; this
may also be seen as an indication that the natural order of time should be taken into account in the
analysis. The consequence of the lack of randomisation is that there may be systematic, but uncon-
trolled, experimental variation with time, so that the variation over time cannot be reproduced in other
experiments. The issue is further discussed in [4] and [5].
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Another critique arises from inspection of the covariance structure in the split-plot model. For a
series, Y (i) = (Yi1, . . . , Yin), of measurements for one individual the covariance matrix is

V (Y (i)) =











σ2 + σ2

A σ2

A · · · σ2

A

σ2

A σ2 + σ2

A · · · σ2

A
...

...
...

...
σ2

A σ2

A · · · σ2 + σ2

A











.

where we have used the computation

Cov(Yi1, Yi2) = Cov(Ai + εi1, Ai + εi2) = Var(Ai) = σ2

A.

Thus all measurements on the same individual are positively correlated, and all pairwise correlations
are the same. This is hardly a reasonable assumption since a pair of measurements is more likely to be
highly correlated if they are close in time than if they are further apart. Thus, in the example it would
mean that dependence from week 1 to week 7 is as strong as the dependence from week 6 to week 7, for
example. This type of covariance structure is called ‘compound symmetry’. More reasonable covariance
structures are available for analysis of repeated measures, but these will not be discussed here. The
procedure PROC MIXED in SAS has several built-in facilities for such analyses.

In practice, however, the split-plot model may give a reasonable analysis for short series (n = 2, 3, 4)
since compound symmetry may not be that far off in such cases. Split-plot method is the simplest kind
of analysis of variance which uses the full data set, and the choice of summary statistics is avoided.
Furthermore it is, in fact, possible to test the hypothesis of compound symmetry to see whether the
split-plot method is reasonable. This will be discussed further in the next section which also describes
ways of correcting the split-plot method when it is not reasonable.

Example 3. Growth of guinea pigs (continued)
Table 6 shows the analysis of variance for the split-plot method First it is seen from the table that

Source SS DF MS F P

Groups 18548 2 9274 1.06 0.38
Weeks 142555 5 28511 52.6 <0.001
G × U 9763 10 976 1.80 0.080
Individuals (main-plots) 105434 12 8786 16.2 <0.001
Residual 32553 60 543
Total 308852 89

Table 6: Split-plot analysis, model (2), for data from Example 1.

there is a considerable variation between individuals, thus confirming the importance of a method that
takes this into account. Further it is seen that the interaction between groups and time is close to being
significant, that (obviously) there is an overwhelmingly significant difference between weeks, and that
aside from the almost significant interaction there is no evidence of difference between the groups. The
test for main effect of groups is, in fact, the same as the test for difference between the intercepts in
the analysis using orthogonal polynomials (Table 5). The present analysis uses time as a factor rather
than as a covariate. For the covariate (regression) approach the method of summary statistics may be
preferable ([4],[5]).

Method 4): ǫ-correction of the split-plot method
In light of the criticism of the split-plot method it is natural to ask when the method seems reasonable,
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and what can be done if it is not. This has been investigated over some time in the statistical literature
(see for example [1]) and by now reasonably clear recommendations can be made. These are summarized
below. The method described here is together with its variants often refered to as ‘Repeated measures
ANOVA’.

It may be shown that the F -tests obtained by the split-plot method are correct if the covariance
matrix satisfies a certain condition called the condition of “sphericity” of which compound symmetry is
a special case. We shall not describe this condition precisely here, only note that there exists a test for
the hypothesis of sphericity, the so-called Mauchly’s test, and that this test is provided by PROC GLM in
SAS. This test is not very efficient and may be quite sensitive to non-normality of the data. Thus, the
test should be considered but only partly be trusted for choice of method.

In this connection it is important to note that an inappropriate application of the split-plot method
may lead to false significances, which is much more dangerous than a conservative test which gives too
few significances. However, there exist corrections of the F -tests which (approximately) account for
the possible lack of sphericity. These are the so-called ǫ-corrections, by which a quantity, ǫ, measures
the departure from sphericity. An ǫ = 1 corresponds to sphericity while smaller values correspond to
deviations from sphericity. The ǫ-corrected test uses the same F -statistic as the split-plot analysis, but
replaces the corresponding degrees of freedom (DF1,DF2) by (ǫDF1, ǫDF2). This correction should be
used for sub-plot tests, in the example these are the tests involving time, while the main-plot tests
should not be corrected.

There are two ways to estimate ǫ, named Greenhouse-Geisser and Huynh-Feldt after two pairs of
authors. It is, unfortunately, not easy to say which is best. There seems to be some consensus that the
Greenhouse-Geisser estimate may lead to conservative tests in small samples. Both are given in SAS
as well as the correspondingly corrected tests (see Section 3). If the discrepancy from sphericity is very
large (ǫ near zero) the method of ǫ-correction is not to be recommended.

Let us illustrate the method on the guinea pig example.

Example 4. Growth of guinea pigs (continued)
The first step is to compute Mauchly’s test for sphericity. In SAS a χ2-square distribution with (n −

2)(n+1)/2 degrees of freedom is used to approximate the distribution of the test statistic. In the present
case the test statistic is 29.4 on 14 degrees of freedom, and the corresponding P -value is 0.0093. Thus,
the test is clearly significant implying that at least some of the F -tests in Table 6 are dubious. Next,
the following estimates of ǫ are given in the SAS output:

Greenhouse-Geisser: ǫ̂ = 0.49,
Huynh-Feldt: ǫ̃ = 0.72.

This is the typical pattern, that ǫ̂ < ǫ̃. The two ǫ-values are used in Table 7 to correct the tests from
the analysis of variance.

P
Source SS DF MS F uncorr. ǫ̂-corr. (G-G) ǫ̃-corr. (H-F)

Groups 18548 2 9274 1.06 0.38 – –
Weeks 142555 5 28511 52.6 <0.001 <0.001 <0.001
G × W 9763 10 976 1.80 0.080 0.15 0.11
Individuals (main-plots) 105434 12 8786 16.2 <0.001 — —
Residual 32553 60 543
Total 308852 89

Table 7: Corrected split-plot analysis for data from Example 1.
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As noted above the corrections only affect tests involving time, including interactions with time. Note
that the effect of the corrections is to increase the P -values. A simplified explanation of this is that when
it is taken into account that neighbouring observations are highly correlated they should not count as
completely new observations, hence the reduced number of degrees of freedom. In the present example
this method of analysis does not catch the previously noted significant difference between the three
groups after week 5; probably because this difference is blurred by the inclusion of several weeks with
no differences. An obvious alternative was only to use the data from weeks 5, 6 and 7.

3. SAS-programs and output

The program below performs (almost) all the analyses described here. The procedure PROC MIXED has
many facilities for analysis of repeated measures using various covariance structures, but some of the
univariate methods described here are only available in proc GLM.

data guinea;

infile ’guinea.dat’;

do grp=1 to 3;

do guinea=1 to 5;

input week1 week3-week7 @@;

output;

end;

end;

proc glm;

class grp;

model week1--week7 = grp / ss3;

repeated week 6 (1 3 4 5 6 7) polynomial / printe summary nom;

run;

Notes:

1. Data is input in a form especially suited for the repeated-statement in proc GLM. The factor(s)
representing the “repetitions” (here time) is not represented by any variable in the SAS dataset,
but indirectly as the series of variables, here week1, week3-week7.

2. In PROC GLM the model is specified by having the series of variables mentioned above on the left
in the MODEL statement, and the right hand side then specifies the model for the individuals in
the experiment (the main-plot part). A detail is the use of the dash between week1 and week7,
allowing us to skip writing all the variables.

3. In the repeated-statement a name is given to identify the repeated (sub-plot) factor. Thus week

does not refer to a variable in the data set, but only gives a name used in the output. The number
6 following week indicates the number of measurements per individual and the numbers in the
paranthesis are the “times”. If the paranthesis was not included equidistant time points would
have been used. The “times” given in this way are of importance for the method using polynomial
fitting to construct summary statistics.

4. The option summary is necessary to produce the results from the orthogonal regression, printe
produces Mauchly’s test for sphericity, while the option nom (no multivariate) suppresses printing
of results from multivariate analysis of variance.

Edited output from the program above using proc GLM:
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General Linear Models Procedure

Class Level Information

Class Levels Values

GRP 3 1 2 3

Number of observations in data set = 15

Dependent Variable: WEEK1

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 2969.2000 1484.6000 2.10 0.1651

Error 12 8481.2000 706.7667

Corrected Total 14 11450.4000

R-Square C.V. Root MSE WEEK1 Mean

0.259310 5.467932 26.585 486.2000

Source DF Type III SS Mean Square F Value Pr > F

GRP 2 2969.2000 1484.6000 2.10 0.1651

Dependent Variable: WEEK3

...

-----------------------

General Linear Models Procedure

Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable WEEK1 WEEK3 WEEK4 WEEK5 WEEK6 WEEK7

Level of WEEK 1 3 4 5 6 7

-----------------------

Partial Correlation Coefficients from the Error SS&CP Matrix /

Prob > |r|

...

E = Error SS&CP Matrix

WEEK.N represents the nth degree polynomial contrast for WEEK
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...

Partial Correlation Coefficients from the Error SS&CP Matrix

of the Variables Defined by the Specified Transformation / Prob > |r|

...

-----------------------

Test for Sphericity: Mauchly’s Criterion = 0.0544835

Chisquare Approximation = 29.389556 with 14 df

Prob > Chisquare = 0.0093

-----------------------

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

GRP 2 18548.1 9274.0 1.06 0.3782

Error 12 105434.2 8786.2

Univariate Tests of Hypotheses for Within Subject Effects

Source: WEEK

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

5 142554.50000 28510.90000 52.55 0.0001 0.0001 0.0001

Source: WEEK*GRP

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

10 9762.73333 976.27333 1.80 0.0801 0.1457 0.1103

Source: Error(WEEK)

DF Type III SS Mean Square

60 32552.60000 542.54333

Greenhouse-Geisser Epsilon = 0.4856

Huynh-Feldt Epsilon = 0.7191

----------------------

Analysis of Variance of Contrast Variables

WEEK.N represents the nth degree polynomial contrast for WEEK

Contrast Variable: WEEK.1

Source DF Type III SS Mean Square F Value Pr > F
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MEAN 1 131764.803 131764.803 87.35 0.0001

GRP 2 2495.213 1247.607 0.83 0.4608

Error 12 18100.874 1508.406

Contrast Variable: WEEK.2

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 2011.47937 2011.47937 6.67 0.0240

GRP 2 4489.67778 2244.83889 7.45 0.0079

Error 12 3617.50952 301.45913

Contrast Variable: WEEK.3

...

Notes:

5. The first part of the output is a series of separate analyses for each week. Only the first is shown
here. Printing of these can be suppressed by use of the option nouni in the model-statement.

6. The next part, ‘Repeated Measures Level Information’, summarizes the model as formulated by the
model- and the repeated-statements, and gives some partial correlation coefficients and contrasts
that are not shown and which will not be discussed here.

7. Mauchly’s test and the analysis of variance tables ‘Between Subjects’ and ‘Within Subjects’ give
the results for method (4): split-plot analysis of variance, ǫ-estimates and -corrections.

8. Finally, under the heading ‘Analysis of Variance of Contrast Variables’ we find the analyses of
variance of the estimates form orthogonal regression discussed under method (2). The heading
‘WEEK.1’ refers to the slopes, ‘WEEK.2’ to the curvatures and so on up to degree 5. The F -tests
are found in the GRP rows. There are no tests for the intercepts because these are the same as the
tests in the analysis of variance ‘Between Subjects’. Note that there are no significant differences
between groups regarding coefficients of higher degree than 2.

The SAS program below, for which we do not show the output, saves the intercepts, slopes and
curvatures from the orthogonal regression in a SAS dataset so that they can be used for further analysis.
This is necessary to use the under method (2) mentioned correction for lower order terms by using the
lower order coefficients as covariates. This analysis is only of interest as a supplement to the results
from the repeated-analysis in PROC GLM when one or more of the polynomial degrees exhibit significant
results.
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data gp;

infile ’guinea.dat’;

do grp=1 to 3;

do guinea=1 to 5;

do week=1,3,4,5,6,7;

input wgt @@;

weekquad=week*week;

output;

end;

end;

end;

proc sort;

by grp guinea;

proc reg data=gp outest=e0 noprint;

model wgt = ;

by grp guinea;

data estint;

set e0;

keep grp guinea intercept;

proc reg data=gp outest=e1 noprint;

model wgt = week;

by grp guinea;

data estlin;

set e1;

weeklin=week;

keep grp guinea weeklin;

proc reg data=gp outest=e2 noprint;

model wgt = week weekquad;

by grp guinea;

data estquad;

set e2;

keep grp guinea weekquad;

data estimpar;

merge gp estint estlin estquad;

by grp guinea;

if week=1;

keep grp intercep weeklin weekquad;

proc print;

proc glm;

class grp;

model intercep weeklin weekquad = grp / ss3;

lsmeans grp / stderr;

proc glm;

class grp;
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model weeklin = intercep grp / ss1 ss3 solution;

proc glm;

class grp;

model weekquad = intercep weeklin grp / ss1 ss3 solution;

run;
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