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Notes on Regression Modelling of Periodic (Seasonal) Effects

The purpose of these notes is to outline how to set up a model with periodic (or seasonal, e.g. yearly
recurring) patterns of sine/cosine wave shape. This can be done within the framework of a linear
model (or any of its extensions, such as modelling on linear predictor scale in a generalized linear
model), provided that the period of the sine wave is considered as fixed and not to be estimated from
the data. For example, when focusing on yearly recurring patterns, the frequency of the sine wave
has been fixed to give a period of one year (see below). However, some formulae are necessary to
translate the coeflicients from the linear equation to the primary parameters of the sine wave: the
amplitude and phase shift.

1 The basic sine wave model

The general equation of a sine wave as a function of time ¢ is the following:
f(t) = p+ asin(wt + ¢) = p+ asin(w(t + ¢o)). (1)
The parameters have the interpretations:
e 4 is the average level across one period of the sine wave,

e « is the amplitude, or half the largest difference between values taken by the sine wave (“maxi-
mum — minimum”),

e w is the frequency, or 27 divided by the period of the sine wave; if ¢ is measured in days, one
should take w = 27 /365 to obtain a yearly period of the sine wave (where 7 is the mathematical
constant, m = 3.14159265. . .),

e ¢ is the phase shift controlling where the sine wave peaks:
* f(t)=0whenwt+¢=kr (k=...,-2,-1,0,1,2,...), that is, t = (k7 — ¢)/w,
x  f(t) = maximal when wt + ¢ = 7/2 4 2km, that is, t = (7/2 + 2km — ¢)/w, e.g., t =
(7/2 = ¢)/w and t = (57/2 = ¢) /w,
* f(t) = minimal when wt + ¢ = —x/2 + 2km, that is, t = (—7/2 + 2kn — ¢)/w, e.g.,
t=(—7/2—¢)/wand t = (37/2 — ¢)/w,

o = ¢/w is the phase shift measured on the same scale as ¢.

1.1 Example: Bulk milk somatic cell counts (SCCs) during one year in a herd

We consider a small part of a dataset collected from 300 Dutch herds in the years 1992-1995 ([1]).
The outcome of interest is the (natural) logarithmic somatic cell count in the milk samples; Figure 1
(next page) shows the observed values as well as the fitted sine wave curve, with its parameters. The
estimates are:

i = 4.3655, SE(1) = 0.0451,
= —0.5847, SE(&) = 0.0651,

~

—0.3180,  SE(¢) = 0.1063.
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Converted to days, the phase shift is (]30 = 365 - (5/ 2w = 18.5 days, corresponding to a peak at day
0.75 - 365 — 18.5 = 255.
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Figure 1: Bulk milk log SCC in a single herd during one year (days 1-365), with overlaid fitted sine
wave curve.

2 The linear sine wave model

Equation (1) is linear in the parameters u and a but non-linear in the parameter ¢. However, by
utilizing standard trigonometric formulae the same model can be parametrized linearly in all its
parameters:

f(t) = p+ B sin(wt) + B2 cos(wt). (2)

Therefore, Equation (2) leads to a linear (possibly extended or generalized) statistical model which
considerably facilitates the statistical analysis. In this model, p is unchanged from Equation (1);
however, the parameters 1 and (2 have no intuitive interpretation. It is therefore often natural to
convert them to the parameters o and ¢ by the formulae:!

b = arctan(f2/031) for B1 # 0, 3)
/2 for 5, =0,
a = i/ cos(¢) = sign(B1)\/ B} + 533, (4)
where arctan denotes the inverse tangent function, and sign(z) = 1 for z > 0 and = —1 for z < 0.

These calculations are illustrated by the somatic cell count data below.

One problem arising from the indirect estimation of o and ¢ through the linear equation (2) is the
lack of standard errors for & and ¢. The traditional solution to use the “delta method” (e.g., Section
6.1.2 of [2]) — an approximation formula based on the estimated variances s? and s2 for 4, and 32,

! Applying the “addition formula” sin(z 4 y) = sin(z) cos(y) + cos(x)sin(y), to the right hand side of (1) and
equating it to the right hand side of (2) yields the relations: 51 = acos(¢) and B2 = asin(¢), from which the formulae
(3) and (4) follow immediately. The second form of (4) follows after some rewriting from the trigonometric relation:

cos(z) = 1/4/1 + tan?(x).



respectively, as well as the estimated covariance s1o between these estimates. The resulting formulae

are:2

SE(9)% ~ (s163 + s36% — 251251 32) /(BF + 63)%, (5)
and

SE(@)Q ~ (3%5% + 3%322 + 28123132)/(3% + B%) (6)

2.1 Example: Bulk milk somatic cell counts (cont)

A linear model based on Equation (2) gave the estimates:

B = —0.55537, SE(A1) =0.0650 (or s = 0.0042256),
By = —0.18283, SE(f;) =0.0623 (or s3 = 0.0038813),

as well as the estimated covariance sj2 = 0.0000883 (we note in passing that since this value is much
smaller than the two variances, the estimates 31 and (9 are almost uncorrelated). We can now apply
the formulae (3) and (4) to recompute the previously given values for ¢ and &,

RS

= arctan((—0.18283)/(—0.55537)) = arctan(0.329204) = 0.3180,
= (—0.55537)/ cos(0.3180) = —0.5847 = —+/(—0.55537)2 + (—0.18283)2.

Qs

Similar calculations by the approximation formulae (5) and (6) lead to the same values for the
respective standard errors as previously given, without any noticeable approximation error.
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2 The delta formula for a general function g(z,y) is: Var(g(z,y)) ~ Var(z)(dg/0z)® + Var(y)(dg/dy)* +
2 Cov(z,y)(0g/0x)(Dg/dy). We use this formula twice, for g(z,y) = arctan(y/x) and for g(z,y) = /22 + y2.



