

A Random Effects Model for Sparse Cross-Classification Data

Henrik Stryhn

CVER - Centre for Veterinary Epidemiological Research
University of Prince Edward Island

SSC 2022
Annual
Meeting
Online

CONTEXT/PROBLEM: RANKING CONFERENCE ABSTRACTS

Practical task at hand:

- based on reviewer scores, rank abstracts from highest to lowest,
- make decisions about “acceptance” (for oral pres.) of abstracts at suitable cut-off.

Data at hand (first round of abstract submissions for ISVEE 16¹):

- 119 abstracts, each scored twice (0–100 scale) by two of 27 reviewers,
- reviewers assessed 1–15 abstracts (average $238/27 = 8.8$).

Approaches considered (post-hoc; (1x) was actually used) to base the ranking on:

- (1) **simple**: average score for two reviewers per abstract,
- (1x) **expanded simple**: request extra review for selected abstracts (with strong reviewer disagreement), and then use (1) with simple average across all reviewers/abstract,
- (2) **model-based**: estimate abstract levels from a statistical model.

First aim: determine the feasibility of (2) and compare its results with (1) and (1x).

¹ 16th International Symposium of Veterinary Epidemiology and Economics, August 7–12, 2022, Halifax, NS.

DATA ILLUSTRATION

Possible data layout for 10 abstracts and 5 reviewers:

Reviewer	Abstract									
	1	2	3	4	5	6	7	8	9	10
1	✓	-	✓	-	-	-	✓	-	-	✓
2	-	✓	-	-	-	✓	✓	-	✓	-
3	✓	✓	-	-	✓	-	-	✓	-	-
4	-	-	-	✓	✓	✓	-	-	-	✓
5	-	-	✓	✓	-	-	-	✓	✓	-

an incomplete two-way classification

- unrealistically “nice” design (actually a balanced incomplete block design) with
 - * equal number (4) of reviews per reviewer (~ “treatment”),
 - * each pair of reviewers share exactly one abstract,

which gives nice (equal precision) comparisons **between reviewers** in a model **accounting for both abstracts and reviewers**; but even in this nice design,

- simple means and adjusted means for reviewers (“treatments”) are not the same,
- similarly nice properties do not hold for abstracts (~ “blocks”), due to too little replication.

Take-away message: we cannot compensate for the incompleteness by a clever design, and dependence on the other classification variable is unavoidable.

STATISTICAL MODELS

The data layout invites a two-way ANOVA,

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad \text{where}$$

- reviewer effects (α_i) and abstract effects (β_j) are taken as either fixed or random (drawn from respective $N(0, \sigma^2)$ distribution(s)),
- extensions (e.g., unequal reviewer variances²) are possible, but not discussed here.

Fixed or random effects? in two-way ANOVA:

- (random): assumes effects drawn from a population, avoids estimation of a large number of individual parameters, exerts smoothing on estimation, balances abstract and reviewer effects against their respective distribution assumptions,
- (fixed): no assumptions on effects — estimated freely to achieve best fit, requires estimation of a very large number of parameters with potential (near-)collinearity between them,
- (mixed): fixed effects for raters (reviewers) is common in item response models², and may be preferable for a small number of raters or with reviewer effects not approximated well by $N(0, \sigma^2)$.

Our focus (here): method (1) vs. random effects (reviewers and abstracts) model.

² An introductory review of models for the two-way layout is in Skrondal & Rabe-Hesketh (2004): *Generalized Latent Variable Modelling*, Section 3.3, including the unequal-variances *congeneric measurement model*.

RESULTS: ORIGINAL DATA + SIMULATION

Variance components: $\sigma^2(\text{abstr.}) = 99.6$, $\sigma^2(\text{rev.}) = 179.3$, $\sigma^2(\text{error}) = 223.6$.

Comparison between simple and random effects model results (original data):

- absolute rank differences: mean = 13.9, sd = 11.3, IQR : 4.5–21, full range : 0–59,
- classification differences: 7 + 7 abstracts (when split as 51:68).

Simulation study for two error level settings (100 simulations each, including random variation among reviewers and errors):

mean (sd)	error $\sigma^2 = 223$		error $\sigma^2 = 22$	
Statistic/Method	simple	random	simple	random
absolute ranking error	21.1 (1.8)	18.4 (1.5)	16.4 (2.1)	7.2 (0.5)
count misclassified	28.8 (4.5)	25.1 (4.0)	21.5 (5.0)	8.1 (2.5)

- substantial differences between simple and model-based results; inspection of the data reveals that simple and model-based ranks differ most when the two reviewers are both extreme in the same direction (both low, or both high)³,
- model-based rankings perform clearly better with low error variance, but only slightly better with actual error variance.

³ Expanding the data with 15 extra reviews (where the two reviewers strongly disagreed) did not change that; nor did it change the disagreements substantially: absolute rank differences: 13.9 (10.6), and 8 + 8 misclassifications.

SECOND PART: HOW DOES THE MODEL DEAL WITH “PROBLEMS”?

Back in earlier days, such data (highly unbalanced and sparse cross-classified⁴) could be termed as “messy” and be subject to special scrutiny⁵.

Estimation (ML or REML, or Bayesian MCMC) did not seem to experience problems: all analyses converged nicely and agreed between software implementations⁶.

What about the model’s sensitivity to added difficulties, such as

- actual collinearity between reviewers and abstracts (in a fixed parameter model sense); two examples to follow (none of which occurred in the actual data),
- unequal error variances by reviewers ∼ reviewer-dependent utilization of scale (may be plausible in this context).

Second aim: explore performance of the random effects model under these circumstances.

⁴ Recall that only two reviews were obtained per abstract, and that the 27 reviewers handled between 1 and 15 abstracts, of which two reviewers only scored one abstract.

⁵ For example, Milliken & Johnson (1992): *Analysis of Messy Data*, or Aitken (1978), *J. Royal Statist. Soc. A* 141, 195–223.

⁶ All results shown are based on Stata’s implementation in the `mixed` command.

DATA ILLUSTRATION ~ PROBLEM I

Modified data layout with extra abstracts and reviewers, in scenario (I):

Reviewer	Abstract										
	1	2	3	4	5	6	7	8	9	10	11
1	✓	-	✓	-	-	-	✓	-	-	✓	-
2	-	✓	-	-	-	✓	✓	-	✓	-	-
3	✓	✓	-	-	✓	-	-	✓	-	-	-
4	-	-	-	✓	✓	✓	-	-	-	✓	-
5	-	-	✓	✓	-	-	-	✓	✓	-	-
6	-	-	-	-	-	-	-	-	-	-	✓
7	-	-	-	-	-	-	-	-	-	-	✓

- a (fixed effects) collinearity between added reviewer and abstract effects:
 - * effects of reviewers 6–7 and abstract 11 cannot be separated from each other,
 - * effectively, 3 added parameters but only 2 extra observations (and essentially the same problem would occur with reviewer 6 only),
 - * such collinearities can typically be detected from data summaries.

Note: estimation is still possible in the random effects model!

DATA ILLUSTRATION ~ PROBLEM II

Modified data layout with extra abstracts and reviewers, in scenario (II):

Reviewer	Abstract												
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	✓	-	✓	-	-	-	✓	-	-	✓	-	-	-
2	-	✓	-	-	-	✓	✓	-	✓	-	-	-	-
3	✓	✓	-	-	✓	-	-	✓	-	-	-	-	-
4	-	-	-	✓	✓	✓	-	-	-	✓	-	-	-
5	-	-	✓	✓	-	-	-	✓	✓	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	✓	-	✓
7	-	-	-	-	-	-	-	-	-	-	✓	✓	-
8	-	-	-	-	-	-	-	-	-	-	-	✓	✓

— also a (fixed effects) collinearity between added reviewer and abstract effects:

- * reviewers 6–8 and abstracts 11–13 are separated from rest of design \Rightarrow abstracts cannot be compared to other abstracts without including effects of reviewers,
- * this type of collinearity may be less obvious visually, but can be detected in a fixed effects model; it seems quite plausible within the conference abstracts context (reviewers may form groups based on their expertise).

IMPACT OF DATA COLLINEARITIES (I – II)

Methods: create desired design collinearities by minimal **rearrangement of reviewers** in actual data, and simulate datasets with random variation for reviewer and error terms, in order to **compare distributions of estimates and ranks** with those of abstracts not affected by collinearities.

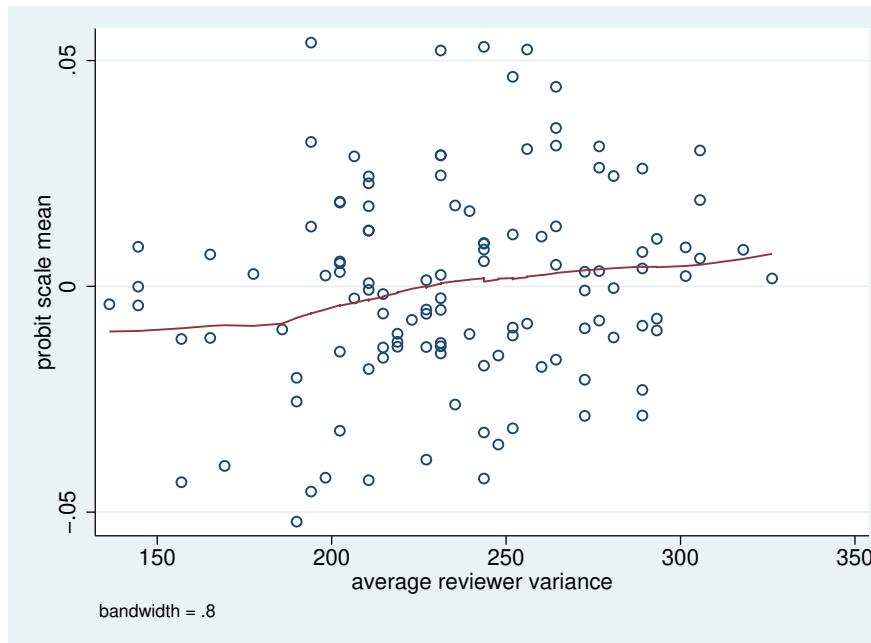
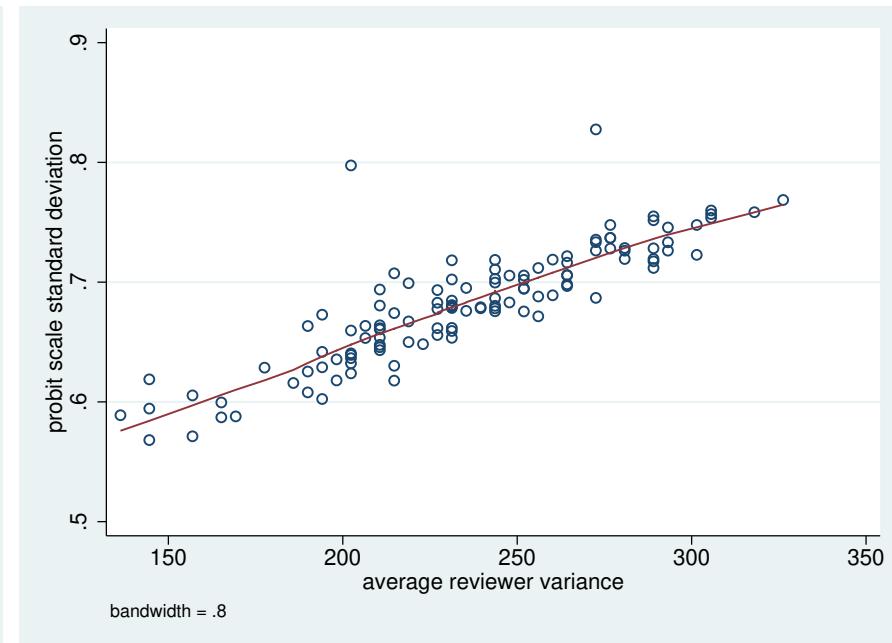
Summary of results for collinearity I – II:

- estimates for affected abstract(s) show **higher/highest variability**, both on the modelling scale and for the ranks, when compared to similarly ranked (± 5) abstracts; findings consistent across:
 - * magnitudes of error variance (as before, $\sigma^2 = 223$ or 22), with more dramatic effects seen for lower error variance,
 - * magnitudes of targeted abstract rank(s) (percentiles ranging $\approx 10 – 50\%$),
 - * sizes of simulation (100 or 1000 replicates),
 - possible **interpretation**: added reviewer variability in the abstract estimate/rank when there is no calibration with larger pool of reviewers.
- also some instances of bias in the ranks towards the center, in particular when the abstract rank is extreme or the error variance is low.

IMPACT OF UNEQUAL VARIANCES

Methods: similar (without collinearities, 1000 replicates), and

- unequal error variances for reviewers (range: 116–330) created in simulations,
- abstract variation included in simulations, smoothing out abstract configurations,
- quantification of rank deviations (estimated minus true) on probit scale⁷.



Interpretation of variance-dependence: limited impact on bias, clear impact on spread.

⁷ The boundedness of ranks make an assessment on original scale difficult.

CONCLUSION/DISCUSSION

Some **cautious conclusions**:

- the model-based approach seemed to apply⁸ and work reasonably well and **better than simple averaging**, even if the improvement in practice might be limited with a large error variance,
- the random effects model seemed reasonably **robust to** (fixed effects) **collinearities**, but it might still be useful to detect them (e.g., in a fixed effects model), so as to pay attention to their impact on results,
- the random effects model showed only little bias from unequal variances, but these did lead to different spread in estimates.

Additional **methodological considerations**:

- Bayesian modelling/estimation possible as well, but seems to agree well with (RE)ML estimation, and did not help with diagnosis of problems (results not shown here),
- only two reviews per abstract limits the options for more complex modeling, for example to account for reviewer heterogeneity⁹ (beyond random intercepts).

Practical **“happy ending”**: the study convinced the conference organizers to use a model-based ranking for the full (≈ 600 abstracts) submission!

⁸ The (formal) model assumptions could be met to a satisfactory degree after a simple scale change, not shown.

⁹ The congeneric measurement model is not identified; Rabe-Hesketh et. al (2001), *The Stata Journal* 1.